

CD FACTORY

ExTAG meeting

Dubai, UAE – 2019-09-23

DFACTORY

Battery testing

Nicholas Ludlam – AVP, Senior Engineering Specialist – FM Approvals Ltd

3.7.3

cell

basic functional unit, consisting of an assembly of electrodes, electrolyte, case, terminals and usually separators, that is a source of electric energy obtained by direct conversion of chemical energy

Note 1 to entry: See primary cell and secondary cell.

3.7.9 primary cell or battery

cell or battery which is not designed to be electrically recharged

3.7.1 battery

one or more cells fitted with devices necessary for use, for example, terminals, marking and protective devices Note 1 to entry: See Figure 1 for examples of typical battery constructions.

Definition - battery

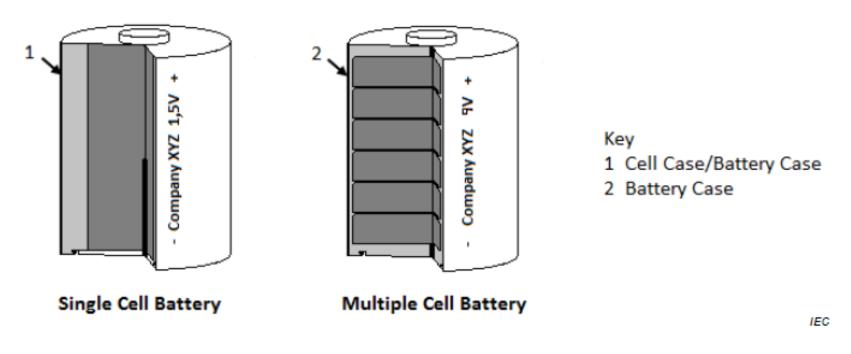


Figure 1 – Typical battery examples

IEC 60079-0 Ed 7

3.7.14

battery compartment

compartment of the equipment that accommodates one or more cells and batteries

Note 1 to entry: The battery compartment is an integral part of the equipment.

Note 2 to entry: A battery compartment may be a battery container

3.7.15 battery container

enclosure to contain one or more cells or batteries

Note 1 to entry: See Figure 2 for examples of typical battery constructions.

Definition - battery container

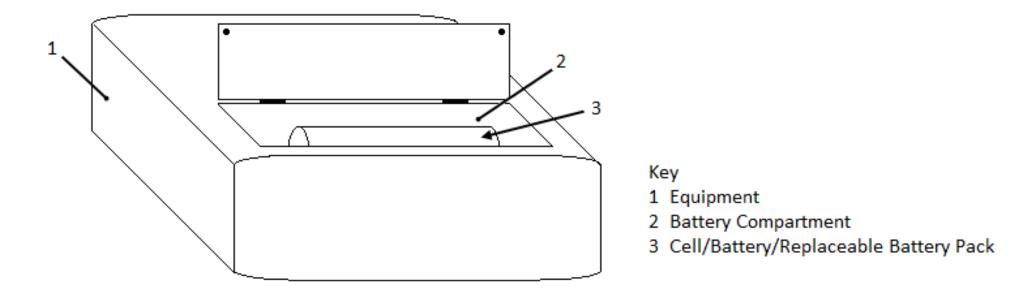


Figure 2 – Typical battery compartment

3.7.17

replaceable battery pack

assembly consisting of one or more interconnected cells, along with any integrated protective components, which form a complete replaceable battery

Note 1 to entry: See Figure 3 for examples of typical replaceable battery pack construction.

Definition - battery pack

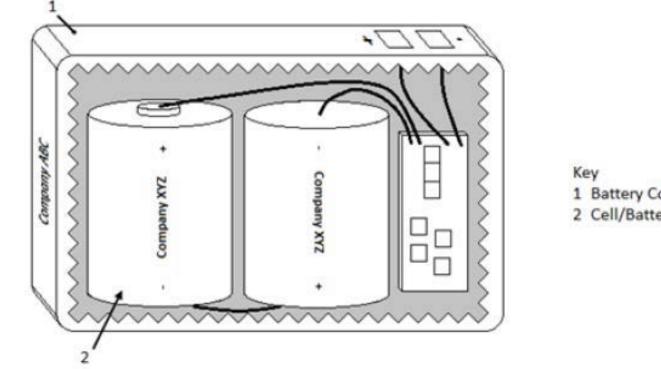


Figure 3 – Typical replaceable battery pack

1 Battery Container 2 Cell/Battery

IEC

- IEC 60079-1 Flameproof "d" Annex E
- IEC 60079-2 Pressurization "p" Annexes G & H
- IEC 60079-5 Powder filling "q" Sub-Clause 4.6
- IEC 60079-7 Increased safety "e" Sub-Clause 5.6
- IEC 60079-15 Type of protection "n" Sub-Clause 10.2.2
- IEC 60079-18 Encapsulation "m" Sub-Clause 7.8
- IEC 60079-31 Protection by enclosure "t" Sub-Clause 4.3.5.1
- IEC 60079-35-1 Caplights for mines Clause 7

Current Requirements for Intrinsic Safety

- Standards used for IECEx CoCs;
 - IEC 60079-0 Ed 6 (2011)
 - IEC 60079-0 Ed 7 (2017)
 - IEC 60079-11 Ed 5 (2006)
 - IEC 60079-11 Ed 6 (2011)

- Open circuit voltage
- Short circuit current
- Maximum surface temperature on short circuit
- Electrolyte leakage on short circuit
- Venting

- Off-gassing of cells
- Faults internal safety devices not meeting requirements
- Battery supply remaining connected when main power disconnected
- Control of charging
- Definition of cells and batteries used

- No major changes for requirements between Ed. 5 and Ed. 6.
- Verifications and tests were modified;
 - Sub-Clause 10.5 introduced the relaxations for Level of Protection "ic"
 - Sub-Clause 10.5.3 b) introduced the requirement to test cells at any temperature between laboratory ambient and the maximum rated ambient of the equipment.
 - Sub-Clause 10.5.3 b) introduced the permission to maintain the internal current limiting for Level of Protection "ib" for the short-circuit temperature rise test.

Items under consideration

- Supercapacitors are not addressed
- Spark-ignition testing using cells
- Surface temperature testing
- Stability of cell technology
- Permitted inductance in circuits
- Lithium-ion cells
 - Safety concerns with testing
 - Increase in short-circuit current

- What is SC31G MT 60079-11 doing to address these items?
 - An interpretation sheet has been developed.
 - The 7th edition of IEC 60079-11 is preparation.

Interpretation sheets

- Interpretation sheet for Ed 6 ISH6
- Interpretation sheet for Ed 5 ISH1
- Drafted and circulated to NCs for comment in April
- Due to be circulated as Draft Interpretation Sheet 2019-10
- Published 2019-12?

- Started 2017
- Major re-organisation and rewrite
- Trying to address inconsistent application
- Planned publication was originally 2020.

Supercapacitors e.g. EDLC

- Defining temperature at which the cells are tested
 - Low temperature
 - Ambient temperature
 - High temperature

Ignition testing

- Spark ignition testing of cells
 - How to achieve safety factor
 - How to overcome cell decay during the test
 - Limitation of spark test apparatus (5 A max assuming 1.5 Safety Factored gas mixture)

- Stability of cell technology
 - Tested at initial certification
 - Not subject to re-test
 - What happens to existing equipment if cells are retested
 - Safety concerns if required to be routine tested

New cell chemistries not listed in IEC 60079-0

Technological improvements

- Should this relaxation remain?
- Based on the inability to have a non-inductive spark at less than 8,5 V.

High short circuit current

- Permitted inductance in circuits
 - No current limiting then an increase in shortcircuit current reduces permitted circuit inductance
 - What about the internal cell impedance?

- Creepage and clearance of cells;
 - Failure between anode/cathode of cells

E.g. Failure of PP3 style cell

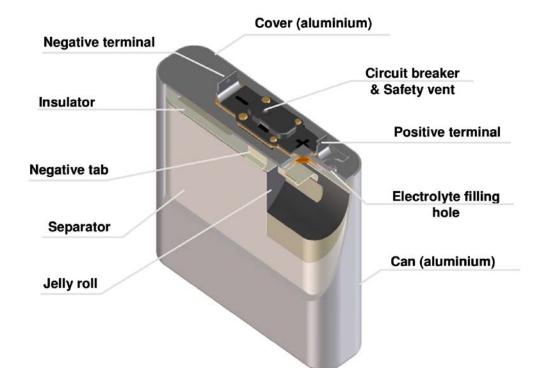
PP3 style construnction

- Lithium-ion cells and availability of cells without protection for test purposes.
- Safety concerns with testing.

Construction Examples

Bobbin construction (High energy cells)

Spiral construction (High power cells)


Pictures courtesy of SAFT

Construction Examples


Prismatic form factor

- Main materials
 - Aluminium
 - Copper
 - Metal oxides
 - Inorganic electrolyte

Construction Examples

Solutions

