The Importance to Correctly Assess the Flammable Hazards during Design and Operation
INTRODUCING

• Ir Mohamad Faizal Hamdan
• Principal Engineer, Electrical
• PETRONAS Group Technical Solutions
Objectives

• To share past experiences on the importance of Hazardous Area Classification (HAC) assessment in defining the right hazards, right design, and the right selection of equipment in the explosive atmosphere.

• The need to control of Hazardous Area Classification in existing plant and infrastructure due to design change, upgrading and/or modification
#1 Modification done to the operation plant has not considered all risks during engineering and proper mitigation leading to..

- HAC not being updated to reflect the impact of the new installation of Fuel Gas Heater by Operation Group

- The latest fuel source that impact HAC is not communicated to Project Team resulting in improper design solution
#2. Design consideration during engineering was based on worst case scenario leading to unoptimised solution:

- Inaccurate in performing HAC e.g. Overdesign of battery room containing recombination type of battery

- The room was design based on worst case scenario i.e. Vented Lead Acid batteries, resulting in unoptimised solution
#3. Incomplete hazardous area classification (HAC) drawings leading to wrong selection of equipment.

- HAC drawing was interpreted from top view only, resulting in Ex nA motor being selected instead of Ex de motor
#4. Generalisation of information leading to inaccuracies of area classification schedule

- Misinformation within area classification schedule (radius and temperature class)
 - AIT not accurate
 - Temperature class shall be decided based on individual equipment surface temperature
#5. Overlook Operational requirement during design stage:

- No firewall was constructed to demarcate hazardous area contributed by wellhead.

- Non-hazardous area was not available to place temporary diesel generator, welding set and etc.
#6. Mismatch in application of Standards in performing Hazardous Area Classification

- Wrong reference used to perform HAC involving cryogenic facilities i.e IP Part 15 was used as reference. Clause 1.1 of Chapter 1 stated the exclusion of cryogenic facility for the applicability of the Code.

- HAC involving dust environment is not being assessed or performed i.e HAC was only done for gas sources
#7. Mismatch in application of Standards in performing Hazardous Area Classification

- IP part 15 exclusively used for HAC without cross reference with other standards where pipe rack is covered by API 505
Root Causes

• Competency gap in HAC and Ex related matter

• Lack of inter-discipline communication process during design stage in HAC assessment and Ex equipment selection requirement.

• HAC management guidelines was not fully adhered to.

• Management of Change (MOC) was not fully executed.
Implications

- Cost to install new Ex Equipment if over-design.
- Cost to replace non-compliance equipment if inaccurate design
- Production deferment for non-compliance installation.
- Operational impact i.e challenges to locate non-Ex equipment supply by contractor e.g temporary generator, welding sets
Resolutions

- Execute and fully comply to Ex Management system which includes:
 - Ex Training and Certification Scheme
 - Interdisciplinary communication and review process established
 - Appointment and Authorisation of Ex person
 - Management of Change (MOC)
 - Ex Situational Assessment
 - Ex Documentation
PETRONAS Technical Standards provides guidelines to ensure proper Hazardous Area Classification

- Hazardous Area Classification (Supplement/Amendment to International Standards)
 - IP -15
 - IEC 60079-10-1 and IEC 60079-10-2
 - API RP 500 and API RP 505
 - NFPA 497 and NFPA 499
PETRONAS Technical Standards provides guidelines to ensure proper management of Ex Equipment

1. Ex Electrical Equipment Inspection and Maintenance Guidelines (Ex IMG)
 - Standards and Guidelines
 - Personnel
 - Inspection
 - Maintenance

2. Ex Equipment Repair Guidelines (Ex ERG)

3. Ex Management Assessment Guidelines (Ex MAG)

4. Ex Equipment Selection Guidelines (ELECTRICAL) (Ex ESG-E)
Where does Hazardous Area and Ex Equipment positioned in the contact of Process Safety?
INTRODUCING

• Syed Mohamed Nasir Alhabshi
• Principal Engineer, Process Safety
• PETRONAS Group Technical Solutions
Major Accident that defines Process Safety

July 1988, Piper Alpha, 165 died

Sept 2005, Texas City, 15 died

Apr 2010, Macondo, 11 died
Major Accident Hazard Prevention

- Identify the asset’s **Safety Critical Elements (SCE)**
- Prevent or limit consequences of **Major Accident Hazards (MAH)** as illustrated below:

<table>
<thead>
<tr>
<th>Safety Critical Elements (hard safety barrier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Structural Integrity</td>
</tr>
<tr>
<td>2. Process Containment</td>
</tr>
<tr>
<td>3. Ignition Control</td>
</tr>
<tr>
<td>4. Detection Systems</td>
</tr>
<tr>
<td>5. Protection Systems</td>
</tr>
<tr>
<td>6. Shutdown Systems</td>
</tr>
<tr>
<td>7. Emergency Responses</td>
</tr>
<tr>
<td>8. Lifesaving</td>
</tr>
</tbody>
</table>

Hazard

Accident

<table>
<thead>
<tr>
<th>Process Safety (soft safety barrier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Proprietary & License Technology Assessment (PLTA)</td>
</tr>
<tr>
<td>2. Design Integrity (DI)</td>
</tr>
<tr>
<td>3. Mechanical Integrity (MI)</td>
</tr>
<tr>
<td>4. Ops Procedures (OP)</td>
</tr>
<tr>
<td>5. Pre-activity Safety Review (PASR)</td>
</tr>
<tr>
<td>6. Process Hazard Analysis (PHA)</td>
</tr>
<tr>
<td>7. Process Safety Information (PSI)</td>
</tr>
<tr>
<td>8. Management Of Change (MOC)</td>
</tr>
</tbody>
</table>
Safety Critical Element (SCE)

8 Barriers

1. Safe Operation
2. Structural Integrity
3. Process Containment
4. Ignition Control
5. Protection System
6. Detection System
7. Shutdown System
8. Emergency Response

Hardware Barriers

- Ballast System
- Fired Heaters
- Hazardous Area
- Chemical Injection
- Security System
- Blowdown
- Communication System
- Personal Survival Equipment
- Collision Avoidance
- Multi Cable Transits
- Certified Ex Equipment
- Deluge System
- De-pressurisation System
- Personal Survival Equipment
- Cranes
- Heat Exchanger
- Electrical Protection
- FW Pumps
- Drilling Well Control
- Lifeboats
- Helicopter Refuel
- Helicopter Facilities
- Drilling System
- Mechanical Handling
- FW Network
- Drilling Well Control
- Open Drains
- Fire Fighting System
- ESD
- Helideck Form
- Helideck Form
- Pipeline System
- Flare Tip Ignition
- H2O in Condensate (Gas dew point)
- Pilings
- Pressure Vessel
- Fuel Gas Purge System
- Relief Valves
- Pressure Vessel
- Rotating Equipment
- Miscellaneous Ignition Control
- Power Management System
- Shutoff Valves
- Sand Filter
- Tank
- Tank Inert System
- Ignition Control
- Tanker Loading
- Helideck Form
- Non-Fixed Fire Fighting Equipment
- Well Containment
- Navigation Aids
- Power Management System
- Temporary Refuge
- Wire Line Equipment
- Pressure Vessel
- Navigation Aids
- Power Management System
- Temporary Refuge
- Wire Line Equipment
- Process Control Alarm
- Personal Survival Equipment
- Helicopter Facilities
- Process Control Alarm
- Personal Survival Equipment
- Tertiary Means of Escape
- Temporary Refuge
- Tertiary Means of Escape
- Personal Survival Equipment
- Tertiary Means of Escape
- Temporary Refuge

*Typical SCE examples
HAC Assessment Methodology and Approach

This Key for a correct Area Classification; Fit for Purpose

- Common Fluid Categories; The application of IP Part 15 - Direct Example and Point Source Approach
- Dusts; The application of NFPA 499 – Recommended Practice for the Classification of Combustible Dusts and the application of IEC 60079, Part 10-2; Classification of Area – Combustible Dusts atmospheres – Direct Example Approach
- Cryogenic Flammable Material with release of >10mm, pressure >100BarA ; Consequence Modelling via dispersion study
- High Flash Point material eg; Lubricant. Verify mist formation via Consequence Modelling via dispersion study
- Pilot Plant & Lab Scale; The application of relaxation factors
- The application of Risk Assessment to assess the consequences of the ignition of an explosive atmosphere to determine the used of Ex equipment of a higher protection level (EPL) or lower EPL
- The use of Phast Software to perform Consequence Modelling
GTS PSM Product Suites Services

FACILITY PROJECT LIFE CYCLE

- Preliminary Design
- Operation / Periodic Review
- Decommissioning

PHA+ Design
- QRA
- FERA
- EERA
- ESSA
- BRA
- TRIA
- SGIA
- ALARP
- Dropped Object Study
- Ship Collision Study
- Consequence Modelling
- NFHA
- 3D Consequence Modelling

PHA+ Risk
- HAZID
- HAZOP
- LOPA
- HER
- Bow-Tie
- Critical Activity Catalogue
- Process Safety Aspects

PHA+ Regulatory
- CIMAH
- HSE CASE
- FSDP
- ERP

PHA+ Fire
- AFP
- PFP
- EERDP
- FSAR
- Hydraulic Calculation
- Firewater Demand Calculation
- FERA
- HAC

PHA+ Extra

Hazard Identification

Hazard Assessment

Consequence Assessment

Risk Assessment

Regulatory Requirement
Key milestones within PETRONAS, MEGA Projects & External Companies

OUR CLIENTS

<table>
<thead>
<tr>
<th>Client</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL</td>
<td>PP(T)SB</td>
</tr>
<tr>
<td>SAMSUNG</td>
<td>PP(M)SB</td>
</tr>
<tr>
<td>CTCI</td>
<td>PDB</td>
</tr>
<tr>
<td>MHI</td>
<td>PEPI</td>
</tr>
<tr>
<td>TECHNIP</td>
<td>PLISB</td>
</tr>
<tr>
<td>TECHICAS</td>
<td>PGB</td>
</tr>
<tr>
<td>TTM</td>
<td>GDC</td>
</tr>
<tr>
<td>JGC</td>
<td>PC Aromatics, PC ODG SB</td>
</tr>
</tbody>
</table>

KEY ACHIEVEMENTS

- **PSM Implementation** for PETRONAS Group Wide i.e. downstream & upstream
- **PSM Audits** for PETRONAS Group Wide with GHSED
- **PHA, HAZOP, HER** for PETRONAS Group Wide
- **Zero Fire** assessment & barrier management for PCSB-SKO & VCMSB
- **PSM Training** for PETRONAS Group Wide
- **HAZOP Leader Certifications** for PETRONAS Group Wide
- **HAC Assessment & Review Workshop**
- **EERA Study** for PCSB-SKO Temana
- **Toxic Gas Dispersion** for PCFKSB, PC LDPE SB
- **Flare Radiation Study** for PGB
- **CRM** for PCSB-SKO, PP(M)SB, PCMSB
- **LOPA Study** for PCSB-SBO Tembungo Field & PGB
- **PRD Study** for PETRONAS Group Wide
- **QRA Study & HSE Case** for PCSB-SKO, PCSB-SBO, PCSB-PMO, PCOSB-TO, PCML

External

- **SHELL** – HAZOP Facilitation for B11 and South Furious Facility.
- **PC GARRAF** – HAZOP & HAZID, Gas Dispersion Modelling Study, Flare (Toxic) Dispersion Study for Garraf Processing Plant. Garraf Light Oil Gas Pipeline HAZOP.
- **SAMUR** – Design Safety Review
- **PFLNG** – HAZOP input, review of various QRA & Safety Studies deliverables.
- **SOGT** – Facilitation of HAZOP for SOGT FEED by SAMSUNG Engineering.
- **PCML** – HSE Case Update including HER update, QRAs, MOPO etc.
HAC Assessment & Review Workshop

• Provide review and update during plant change/modification (Brownfield Project)
• Provide HAC Review Workshop (Greenfield Project)
• HAC review for Pilot Plant & Lab Scale
Thank you